Consulting, interpreting and using first aid research evidence

Dr. Jorien Laermans

Field coordinator Cochrane First Aid Centre for Evidence-Based Practice (CEBaP) Belgian Red Cross

Elke Weyenbergh

Focal Point First Aid International Department Belgian Red Cross

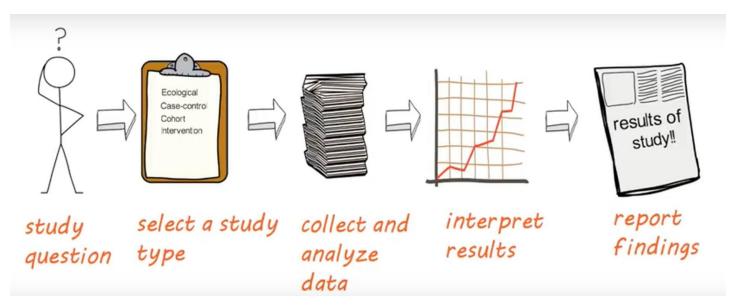


What is Cochrane First Aid?

- Thematic Field of Cochrane
- Mission:
 - > Forming a global network of people advocating for the development, dissemination and uptake of high-quality evidence on first aid
 - > Promoting the use of evidence on first aid
 - > Form a liaison between science and practice:
 - Provide overview of the best available scientific evidence
 - Monitoring practitioner's needs

Overview

- Part 1: Scientific research for dummies
- Part 2: Interpreting the results of scientific studies and systematic reviews
- Part 3: Cochrane First Aid



Overview

- Part 1: Scientific research for dummies
- Part 2: Interpreting the results of scientific studies and systematic reviews
- Part 3: Cochrane First Aid

Scientific research: the process

More information: https://www.youtube.com/watch?v=Jd3gFT0-C4s

Scientific research: defining the study question

Should we have been able to deliver the content of this webinar as an interactive live session in Calgary, would:

- our attendees learn more?
- the level of interaction be higher?
- the overall experience of the attendees be better?

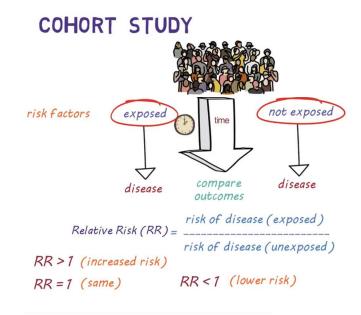
	Population	Survival 2020 conference attendees
ΡΙϹΟ	Intervention	Attending webinar
question	Comparison	Attending interactive live session
	Outcome	Learning outcomes, interaction, overall experience

Scientific research: selecting the right study type

More information:

https://blog.optimalworkshop.com/a-beginners-guide-to-qualitative-and-quantitative-research/ https://www.youtube.com/watch?v=a-XtVF7Bofg

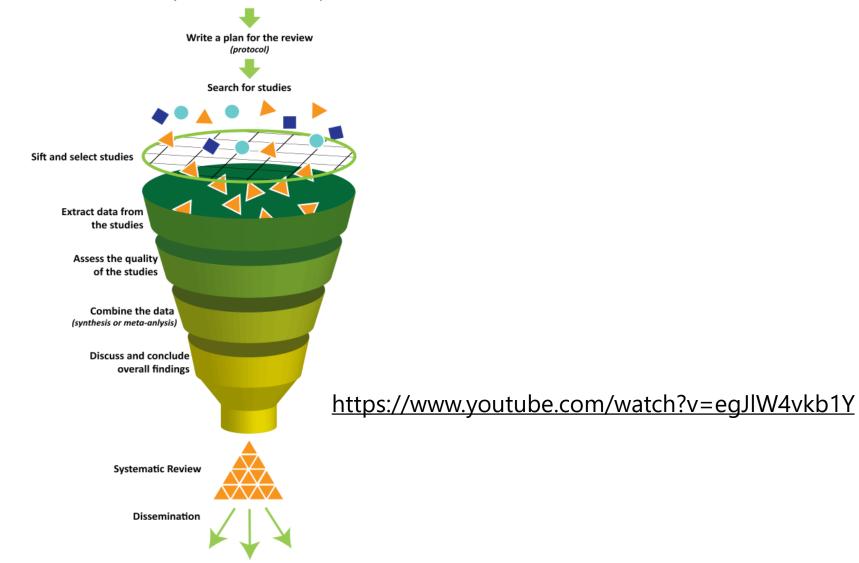
Scientific research: selecting the right study type

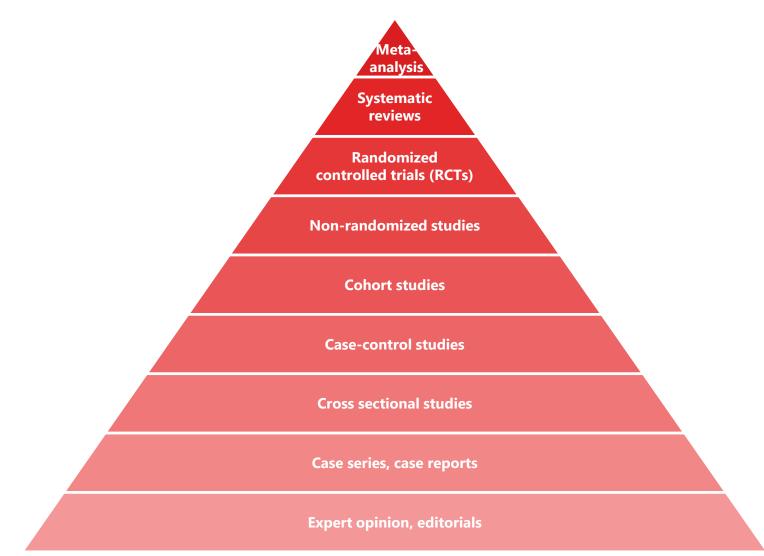


Feature	Experimental study	Observational study	
Active intervening?	Yes At least 2 interventions	Νο	
Goal?	Compare the effectiveness of interventions	Investigate if Δ in 1 parameter (e.g. received intervention) cause/are associated with Δ in a 2 nd parameter (e.g. mortality)	
Demonstrate causality?	Yes	Not necessarily Often only association or correlation	

Scientific research: experimental and observational study designs

https://www.youtube.com/watch?v=J d3gFT0-C4s


Great YouTube movie that covers the most important observational and experimental study designs, including advantages and disadvantages!


advantages	
time sequence can be determined	causality
collection of outcome/risk factors	
sub analysis	
disadvantages	
cost	
not good for rare diseases	
ensuring people who started study	stay till the end

Scientific research: systematic review and meta-analysis

Identify the issue and determine the question

Scientific research: the hierarchy of evidence

Additional useful resources

- Students 4 Best Evidence
 https://s4be.cochrane.org/
 - Learning resources, Tutorials and fundamentals
 - > Topics: Study design and research methods, Statistics

- YouTube channel of Simple Learning Pro https://www.youtube.com/channel/UCiiyrRcEuDSzInajTud90Sw
 - > Types of Experimental designs
 - > Sampling methods
 - > Placebo effect, control groups, and the double blind experiment

Overview

- Part 1: Scientific research for dummies
- Part 2: Interpreting the results of scientific studies and systematic reviews
- Part 3: Cochrane First Aid

How to read a scientific paper?

1 SKIM

First get the "big picture" by reading the title, key words and abstract carefully; this will tell you the major findings and why they matter.

- Quickly scan the article without taking notes; focus on headings and subheadings.
- Note the publishing date; for many areas, current research is more relevant.
- Note any terms and parts you don't understand for further reading.

Read the article again, asking yourself questions such as:

- What problem is the study trying to solve?
- Are the findings well supported by evidence?
- Are the findings unique and supported by other work in the field?
- What was the sample size? Is it representative of the larger population?
- Is the study repeatable?
- What factors might affect the results?

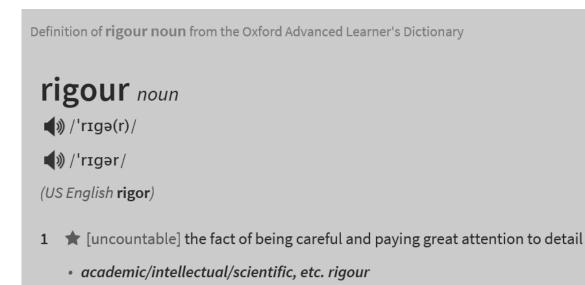
If you are unfamiliar with key concepts, look for them in the literature.

https://www.elsevier.com/connect/infographic-how-to-read-a-scientific-paper

How to read a scientific paper?

- Examine graphs and tables carefully.
- Try to interpret data first before looking at captions.
- When reading the discussion and results, look for key issues and new findings.
- Make sure you have distinguished the main points. If not, go over the text again.

SUMMARIZE


- Take notes; it improves reading comprehension and helps you remember key points.
- If you have a printed version, highlight key points and write on the article. If it's on screen, make use of markers and comments.

https://www.elsevier.com/connect/infographic-how-to-read-a-scientific-paper

How to read a systematic review?

- Take a close look at the Methodology section
 - > How **rigorously** was the review performed?

Replicability and robustness of findings

Rigour of methodology: aspects to consider

Protocol registration

- > Have they planned the review a priori?
- > Did they stick to their plan?
- 2 independent reviewers

Literature search

- > Did the reviewers search enough and relevant databases?
- > Is the string of search terms sensitive (inclusive, broad) enough to answer the question? Are we sure they didn't miss studies?
- > Is there enough information to replicate the search?
- > Have they included unpublished studies (e.g. evaluation reports, conference abstracts)?

Rigour of methodology: aspects to consider

- > Should cover study designs, Population, Intervention, Comparison and Outcomes
- > Are they clearly described?
- > Do they make sense? Are rationales provided?
- > Limits regarding language, time frame?

Quality appraisal

- > Individual studies: Risk of Bias assessment (tools: RoB 2, ROBINS-I)
- > Body of evidence: GRADE

Data extraction and analysis

- > Have they explored the possibility to perform meta-analysis?
- > If not, have they used alternative manners to synthesize the data?

Rigour of methodology: Cochrane & PRISMA

Cochrane MECIR standards

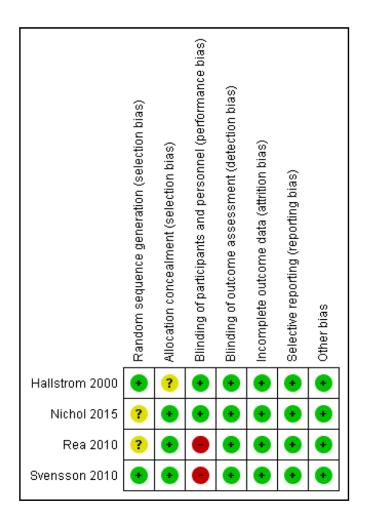
- > "Methodological Expectations of Cochrane Intervention Reviews"
- > Most rigorous method
- > https://community.cochrane.org/mecir-manual

PRISMA checklist

- > "Preferred Reporting Items for Systematic Reviews and Meta-analyses"
- > Minimum set of items for reporting
- > http://www.prisma-statement.org/

Cochrane systematic reviews: fixed format

Cochrane Database of Systematic Reviews


Continuous chest compression versus interrupted chest compression for cardiopulmonary resuscitation of non-asphyxial out-of-hospital cardiac arrest (Review)

Zhan L, Yang LJ, Huang Y, He Q, Liu GJ

- Abstract
- Plain language summary
- Summary of Findings
- Background
- Objectives
- Methods
- Results
- Discussion
- Authors conclusions
- References
- Characteristics of included studies
- Data and analysis
- Additional Tables

Cochrane systematic reviews: Results

Risk of bias – Traffic light plot + text

- Randomization
- Allocation concealed
- Blinding (participants, personnel, outcome assessors)
- Incomplete outcome data
- Selective reporting
- Other bias (e.g. Conflicts of Interest)

Cochrane systematic reviews: Results

Effect of interventions

- > Per intervention
- > Per outcome
- > Meta-analyses Forest plots

Figure 3. Forest plot of comparison: Bystander-provided CPR, outcome: 1.1 Survival to hospital discharge.

	Chest compression	on alone	ne chest compression + ventilation			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Hallstrom 2000	35	240	29	278	15.3%	1.40 [0.88, 2.22]	• • •
Rea 2010	122	978	105	956	60.4%	1.14 [0.89, 1.45]	
Svensson 2010	54	282	44	297	24.4%	1.29 [0.90, 1.86]	
Total (95% CI)		1500		1531	100.0%	1.21 [1.01, 1.46]	
Total events	211		178				
Heterogeneity: Chi ² =							
Test for overall effect: Z = 2.05 (P = 0.04)							0.5 0.7 1 1.5 2 Conventional CPR Chest compression alone

Cochrane systematic review: keeping the overview

SUMMARY OF FINDINGS

Summary of findings for the main comparison. Continuous chest compression alone compared to interrupted chest compression plus artificial ventilation for out-of-hospital cardiac arrest

Continuous chest compression alone compared to interrupted chest compression plus artificial ventilation for non asphyxial out-of-hospital cardiac arrest

Patient or population: People with non-trauma related out-of-hospital cardiac arrest Settings: Urban settings in the USA, UK and Sweden (CPR performed by untrained bystanders) Intervention: Continuous chest compression alone

Comparison: Interrupted chest compression plus ventilation

Outcomes	Illustrative comparative risks* (95% CI)		Relative effect (95% CI)	No of Partici- pants	rtici- Quality of the evidence	Comments
	Assumed risk	Corresponding risk		(studies)	(GRADE)	
	Interrupted chest compression plus ventilation	Continuous chest com- pression alone				
Survival to hospital discharge	116 per 1000	141 per 1000 (117 to 170)	RR 1.21 (1.01 to 1.46)	3031 (3 studies)	0000 High ¹	
Survival to hospital admission	341 per 1000	402 per 1000	RR 1.18	520	0000	
		(320 to 504)	(0.94 to 1.48)	(1 study)	Moderate ²	
Survival at one year	See comment	See comment	Not estimable	0 (0)	See comment	No data available for this outcome

Cochrane systematic review: keeping the overview

GRADE certainty of evidence	Interpretation	Conclusion statements	
High (A)	We have a lot of confidence that the true effect is similar to the estimated effect	Continuous chest compressions alone increases survival to hospital discharge	
Moderate (B)	We believe that the true effect is probably close to the estimated effect	Continuous chest compressions alone probably increases survival to hospital admission	
Low (C)	The true effect might be markedly different from the estimated effect	X may increase/decrease Y	
Very Low (D)	The true effect is probably markedly different from the estimated effect	The evidence is very uncertain about the effect of X on Y	

Cochrane systematic review: keeping the overview

Plain language summary

Available in English Español Français Bahasa Malaysia Русский

Continuous chest compression versus interrupted chest compression for cardiopulmonary resuscitation (CPR) of non-asphyxial out-of-hospital cardiac arrest (OHCA)

Background

A cardiac arrest is when the heart stops pumping blood around the body. It is a major cause of death worldwide. A large number of cardiac arrests occur outside of hospitals. Conventional CPR includes both chest compressions and rescue breathing such as mouth-to-mouth resuscitation. This is known as interrupted chest compression with pauses at a fixed ratio for rescue breathing (e.g. 2 breaths: 30 compressions).

Additional useful resources

Judging the reliability of research

- > https://www.askforevidence.org/help/evidence
- > <u>http://senseaboutscience.org/wp-</u> <u>content/uploads/2016/11/IDontKnowWhatToBelieve.pdf</u>
- > <u>http://senseaboutscience.org/wp-content/uploads/2016/09/peer-review-the-nuts-and-bolts.pdf</u>
- **Cochrane Training** <u>https://training.cochrane.org/</u>
 - > Online learning, learning events (webinars, workshops, courses)

- > All aspects of systematic reviews and evidence-based medicine
- Students 4 Best Evidence <u>https://s4be.cochrane.org/</u>
 - > Learning resources, Tutorials and fundamentals
 - > Topics: Bias, Searching for evidence, Systematic Reviews
- Catalog of bias <u>https://catalogofbias.org/</u>
 - > Collaborative project mapping all biases that affect health evidence

Overview

- Part 1: Scientific research for dummies
- Part 2: Interpreting the results of scientific studies and systematic reviews
- Part 3: Cochrane First Aid

Cochrane First Aid so far

1. Network building

> GFARC as collaborating centre

International Federation of Red Cross and Red Crescent Societies Fédération internationale des Sociétés de la Croix-Rouge et du Croissant-Rouge Federación Internacional de Sociedades de la Cruz Roja y de la Media Luna Roja الاتحاد الدولي لجمعيات الصليب الأحمر والهلال الأحمر

Global First Aid Reference Centre

2. Building demand

- > Quarterly screening of Cochrane Library https://www.cochranelibrary.com/
- > Register on first aid-related Cochrane systematic reviews <u>https://firstaid.cochrane.org/evidence</u>

Resuscitation and defibrillation

Author	Year	Title	Cochrane Review Group	
Parry	2010	Community first responders for out-of-hospital cardiac arrest in adults	Cochrane Emergency and Critical Care	
Barry	2019	and children	Group	
Bruschettini	2017	Sustained versus standard inflations during neonatal resuscitation to	Cochrane Neonatal Group	
Druschettini	2017	prevent mortality and improve respiratory outcomes		
	2014	Cardiopulmonary resuscitation (CPR) plus delayed defibrillation versus	Cochrane Emergency and Critical Care	
Huang		immediate defibrillation for out-of-hospital cardiac arrest	Group	
Lafuente-Lafuente	2012	Active chest compression-decompression for cardiopulmonary	Cochrane Heart Group	
	2015	resuscitation		
Zhan		Continuous chest compression versus interrupted chest compression	Cochrane Emergency and Critical Care	
	2017	for cardiopulmonary resuscitation of non-asphyxial out-of-hospital		
		cardiac arrest	Group	

Cochrane First Aid so far

3. Knowledge translation

Continuous chest compressions versus interrupted chest compressions for cardiopulmonary resuscitation of non-asphyxial out-of-hospital cardiac arrest

In adults and children with non-asphyxial cardiac arrest, treated by untrained bystanders, continuous chest compressions improve survival to hospital discharge when compared to standard CPR (high-certainty evidence). They may also improve survival to hospital admission and neurological outcome on hospital discharge, but the effects vary and it is possible that it makes little or no difference (moderate-certainty evidence).

No information is available on adverse events, survival at one year, quality of life or return of spontaneous circulation.

Cochrane review (published 2018); 3 studies with 3737 untrained bystanders, comparing continuous chest compressions (without pauses for rescue breaths) with standard CPR, both with telephone guidance by emergency services.

firstaid.cochrane.org | @cochranefirstaid | https://bit.ly/2MSCDIV

@Cochrane_FA

@cochrane_firstaid

@CochraneFirstAid

firstaid.cochrane.org

How to contribute to knowledge translation within Cochrane First Aid?

Product generators

Product Disseminators

Making blogshots

Spreading the work via social media (Facebook, Twitter, Instagram) and other channels (e.g. own Red Cross Society website)

Translators

Translating blogshots from English to another language

From evidence to guideline: the Belgian Red Cross

2. Evidence summaries

Broken or dislocated limbs	Management	Sling vs no sling	16-1-2018
Blood pressure	Diagnostics	Automatic blood pressure measurement	16-1-2018
Blood pressure	Management	Blood pressure measurement (laypeople vs professionals)	16-1-2018
Broken or dislocated limbs	Management	Sling vs splint	18-1-2018
Broken or dislocated limbs	Management	Splint vs no immobilisation	18-1-2018
Bruise	Management	Ice	18-1-2018
Burns	Management	Applying mercurochrome	18-1-2018
Burns	Management	Ice	18-1-2018
Burns	Management	Deroofing or aspiration of blisters	18-1-2018
Burns	Management	Honey	18-1-2018

There is limited evidence in favour of using honey over conventional dressings:

It was shown that treatment with honey resulted in a statistically significant decrease in time to healing, compared to treatment with conventional dressings.

A statistically significant increase of adverse events, using honey compared to conventional dressings, could not be demonstrated.

3. Contextualized first aid manuals

Other organisations putting the evidence-based in first aid

- Scientific Advisory Council (SAC) of the American Red Cross
 - > https://www.redcross.org/take-a-class/scientific-advisory-council
- International Liaison Committee on Resuscitation (ILCOR)
 - > First Aid Task Force
 - > <u>https://www.ilcor.org/</u> and <u>https://costr.ilcor.org/</u>
- International Federation of Red Cross and Red Crescent Societies (IFRC)
 - > Global First Aid Reference Centre (GFARC)
 - > IFRC First Aid guidelines 2021 in the making
 - > https://www.ifrc.org/en/what-we-do/health/first-aid-saves-lives/

Additional useful resources

- From evidence to guidelines using the principles of Evidence-Based Practice
 - > <u>https://www.cebap.org/methodology/ebp-e-learning/</u>

Hope to hear from you soon!

